Analytical Approach for Thermo-electro-mechanical Vibration of Piezoelectric Nanoplates Resting on Elastic Foundations based on Nonlocal Theory

Authors

  • Korosh Khorshidi Department of Mechanical Engineering, Arak University, Arak, 38156-88349, Iran
  • Mahdi Karimi Institute of Nanosciences & Nanotechnolgy, Arak University, Arak, 38156-88349, Iran
Abstract:

In the present work, thermo-electro vibration of the piezoelectric nanoplates resting on the elastic foundations using nonlocal elasticity theory are considered. In-plane and transverse displacements of the nanoplate have been approximated by six different modified shear deformation plate theories considering transverse shear deformation effects and rotary inertia. Moreover, two new distributions of transverse shear stress along the thickness of the nanoplate were introduced for the first time. The equations of motion were derived by implementing Hamilton’s principle and solved using analytical method for various boundary conditions including SSSS, CSSS, CSCS, CCSS and CCCC. Based on a comparison with the previously published results, the accuracy of the results was confirmed. Finally, the effects of different parameters such as boundary conditions, variations of the thickness to length ratio, aspect ratio, increasing temperature, external voltage, foundation coefficients and length scale on the natural frequency of the plate were shown and discussed in details.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Semi-Analytical Solution for Vibration of Nonlocal Piezoelectric Kirchhoff Plates Resting on Viscoelastic Foundation

Semi-analytical solutions for vibration analysis of nonlocal piezoelectric Kirchhoff plates resting on viscoelastic foundation with arbitrary boundary conditions are derived by developing Galerkin strip distributed transfer function method. Based on the nonlocal elasticity theory for piezoelectric materials and Hamilton's principle, the governing equations of motion and boundary conditions are ...

full text

Vibration Analysis of Circular Magneto-Electro-Elastic Nano-plates Based on Eringen s Nonlocal Theory

The present work mainly studies the free vibration of circular magneto-electro-elastic (MEE) nano-plates based on the Kirchhoff’s plate theory within the framework of nonlocal elasticity theory to account for the small scale effect. The MEE nano-plate studied here is considered to be fully clamped and subjected to the external magnetic and electric potentials. Using nonlocal constitutive relati...

full text

Forced vibration of piezoelectric nanowires based on nonlocal elasticity theory

In this paper, a numerical solution procedure is presented for the free and forced vibration of a piezoelectric nanowire under thermo-electro-mechanical loads based on the nonlocal elasticity theory within the framework of Timoshenko beam theory. The influences of surface piezoelectricity, surface elasticity and residual surface stress are taken into consideration. Using Hamilton’s principle, t...

full text

Finite Difference Method for Biaxial and Uniaxial Buckling of Rectangular Silver Nanoplates Resting on Elastic Foundations in Thermal Environments Based on Surface Stress and Nonlocal Elasticity Theories

In this article, surface stress and nonlocal effects on the biaxial and uniaxial buckling of rectangular silver nanoplates embedded in elastic media are investigated using finite difference method (FDM). The uniform temperature change is utilized to study thermal effect. The surface energy effects are taken into account using the Gurtin-Murdoch’s theory. Using the principle of virtual work, the...

full text

forced vibration of piezoelectric nanowires based on nonlocal elasticity theory

in this paper, a numerical solution procedure is presented for the forced vibration of a piezoelectric nanowire under thermo-electro-mechanical loads based on the nonlocal elasticity theory within the framework of timoshenko beam theory. using hamilton’s principle, the nonlocal governing differential equations are derived. the governing equations and the related boundary conditions are discreti...

full text

A Semi-Analytical Solution for Free Vibration and Modal Stress Analyses of Circular Plates Resting on Two-Parameter Elastic Foundations

In the present research, free vibration and modal stress analyses of thin circular plates with arbitrary edge conditions, resting on two-parameter elastic foundations are investigated.  Both Pasternak and Winkler parameters are adopted to model the elastic foundation. The differential transform method (DTM) is used to solve the eigenvalue equation yielding the natural frequencies and mode shape...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 2

pages  117- 129

publication date 2019-11-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023